Activation of PDGF receptor alpha in vascular smooth muscle cells by mechanical stress.
نویسندگان
چکیده
Hypertension increases mechanical force on the arterial wall by as much as 30%, resulting in marked alterations in signal transductions and gene expression in vascular smooth muscle cells (VSMCs) that contribute to matrix protein synthesis, cell proliferation, and differentiation. How the mechanical stimuli are converted into a biological signal in cells has yet to be studied. We investigated the role of both cyclic strain and shear stresses in initiating the cellular signaling on cultured VSMCs and found that mechanical forces evoked activation of mitogen-activated protein kinases, followed by enhanced DNA binding activity of transcription factor AP-1. Physical forces rapidly induced phosphorylation of platelet-derived growth factor receptor (PDGFR) alpha, an activated state. When GRB2, an adapter protein, was immunoprecipitated from treated VSMCs followed by Western blot analysis with anti-phosphotyrosine, -PDGFR alpha, and -GRB2 antibodies, respectively, phosphotyrosine positive staining was observed on PDGFR alpha bands of the same blot in stretch-stressed VSMCs, supporting the mechanical stress-induced activation of PDGFR alpha. Conditioned medium from stretch-stressed VSMCs did not result in PDGFR alpha phosphorylation, and antibodies binding to all forms of PDGFs did not block stress-induced PDGFR alpha activation. Thus, mechanical stresses may directly perturb the cell surface or alter receptor conformation, thereby initiating signaling pathways normally used by growth factors.
منابع مشابه
Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor beta.
Embryonic stem (ES) cells are exposed to fluid-mechanical forces, such as cyclic strain and shear stress, during the process of embryonic development but much remains to be elucidated concerning the role of fluid-mechanical forces in ES cell differentiation. Here, we show that cyclic strain induces vascular smooth muscle cell (VSMC) differentiation in murine ES cells. Flk-1-positive (Flk-1+) ES...
متن کاملBiomechanical stress-induced signaling in smooth muscle cells: an update.
The vascular wall is an integrated functional component of the circulatory system that is continually remodelling or is developing atherosclerosis in response to hemodynamic or biomechanical stress. In this process mechanical force is an important modulator of Vascular Smooth Muscle Cell (VSMC) morphology and function, including apoptosis, hypertrophy and proliferation that contribute to the de...
متن کاملMechanical Stretch Increases MMP-2 Production in Vascular Smooth Muscle Cells via Activation of PDGFR-β/Akt Signaling Pathway
Increased blood pressure, leading to mechanical stress on vascular smooth muscle cells (VSMC), is a known risk factor for vascular remodeling via increased activity of matrix metalloproteinase (MMP) within the vascular wall. This study aimed to identify cell surface mechanoreceptors and intracellular signaling pathways that influence VSMC to produce MMP in response to mechanical stretch (MS). W...
متن کاملRegulation of platelet-derived growth factor ligand and receptor gene expression by alpha-thrombin in vascular smooth muscle cells.
Since the expression of genes for platelet-derived growth factor (PDGF)-A and PDGF beta-receptor are reciprocally regulated in vascular wall cells after balloon injury, we have investigated the ability of specific vasoactive molecules or growth factors to reproduce the injury pattern of gene expression in cultured rat smooth muscle cells (SMCs) and assessed the effect of inactivating alpha-thro...
متن کاملTGF-beta suppresses the upregulation of MMP-2 by vascular smooth muscle cells in response to PDGF-BB.
During platelet-derived growth factor (PDGF)-BB-mediated recruitment to neovascular sprouts, vascular smooth muscle cells (VSMCs) dedifferentiate from a contractile to a migratory phenotype. This involves the downregulation of contractile markers such as smooth muscle (SM) alpha-actin and the upregulation of promigration genes such as matrix metalloproteinase (MMP)-2. The regulation of MMP-2 in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 12 12 شماره
صفحات -
تاریخ انتشار 1998